News & events - Keyword : Proteins

Chronological order of publication in this website

Cellule HeLa vue avec SwissKASH.

La palmitylation, une nouvelle cible
pour les médicaments contre le cancer

Les protéines membranaires périphériques ont la particularité de se lier temporairement aux membranes cellulaires, étape obligatoire pour qu’elles puissent ensuite remplir leur fonction biologique. Pour ce faire, certaines enzymes servant à catalyser leur modification lipidique entrent en action. Ce processus se nomme «palmitylation». Or, certaines protéines peuvent muter pour devenir oncogènes, et notamment les protéines RAS, responsables d’environ un tiers des cancers.

Afin de comprendre le fonctionnement de la palmitylation et de l’utiliser à des fins thérapeutiques, les groupes du Prof. Vladimir Katanaev et du Prof. Gonzalo Solis de l’Université de Genève ont développé un nouvel outil pour visualiser ce processus dans les cellules vivantes. Et contrairement à ce que l’on pensait, la palmitylation est possible non seulement dans l’appareil de Golgi, site habituel de traitement et d’administration des protéines, mais aussi à l’endroit précis où la protéine doit agir. Cette découverte, à lire dans la revue Nature Communications, ouvre la voie à des stratégies innovantes de développement de médicaments afin de cibler très précisément la liaison membranaire – et donc l’activité – des protéines favorisant l’apparition de cancers.

Cellules de cancer du sein dans un tissu osseux

Cancer du sein: pourquoi les métastases gagnent les os

Lorsque des cellules cancéreuses se détachent d’une tumeur primaire pour migrer vers d’autres organes, on parle de «cancer métastatique». Les organes touchés par ces métastases dépendent toutefois en partie de leur tissu d’origine. Dans le cas d’un cancer du sein, elles se forment en général au niveau des os.

En cherchant à identifier ce qui détermine les organes atteints par les métastases, l’équipe du Pr Didier Picard de l’Université de Genève, en collaboration avec des chercheurs de l’ETH Zurich, a identifié une protéine impliquée dans ce phénomène. Cette découverte pourrait favoriser le développement d’approches thérapeutiques pour supprimer les métastases. Ces travaux sont à lire dans la revue Nature Communications.

Embryons de C. elegans

Physique et biologie explorent ensemble
les mécanismes du vivant

Chacune de nos cellules contient environ 40 millions de protéines qui accomplissent ensemble toutes les tâches nécessaires à sa survie. Pour y parvenir, les différentes protéines doivent être concentrées en quantités spécifiques, au bon endroit au bon moment. Le processus qui permet le déroulement sans accrocs d’une distribution si précise se déroule à des résolutions spatiales si infimes que les outils standard de biologie cellulaire sont souvent incapables de le détecter.

Pour comprendre comment fonctionne ce mécanisme, des scientifiques du groupe de la Pre Monica Gotta de l’Université de Genève ont développé une approche novatrice qui combine des expériences de génétique et de biologie cellulaire à une modélisation faisant appel à la physique. Grâce à des algorithmes spécifiques, ils/elles ont simulé en 3D et sous forme dynamique la formation de gradients de protéines et ont pu expliquer ces phénomènes complexes. De plus, leur modèle peut être adapté à d’autres systèmes biologiques pour étudier la dynamique des protéines. Ces résultats sont à découvrir dans les Proceedings of the National Academy of Sciences.

Coupes d’intestin de souris

Comment l’alimentation modifie l’intestin

Avec plus de 10% de la population mondiale obèse et 40% en surpoids, l’obésité constitue l’un des défis sanitaires les plus cruciaux. Les options thérapeutiques restent néanmoins rares et peu efficaces.

Il y a quelques années, des scientifiques du groupe du Pr Mirko Trajkovski de l’Université de Genève avaient découvert que la surface d’absorption et la fonction de l’intestin se modifiaient sous l’effet de certains stimuli externes, comme par exemple l’exposition au froid.

En utilisant différents modèles de souris combinés à des biopsies intestinales humaines, ces chercheurs décryptent aujourd’hui les mécanismes moléculaires régissant cette surprenante plasticité et montrent qu’une nourriture plus abondante augmente la surface de l’intestin et sa capacité d’absorption. En cause, l’expression accrue de PPARα, une protéine régulatrice qui s’avère indispensable au mécanisme d’augmentation de la capacité d’absorption des calories induite par la suralimentation. En outre, si des quantités élevées de nourriture augmentent la surface d’absorption de l’intestin, la restriction alimentaire peut inverser le processus et le ramener à un niveau proche de la normale. Ce phénomène a d’ailleurs pu être reproduit grâce à des techniques pharmacologiques et génétiques, suggérant ainsi des stratégies qui pourraient potentiellement limiter l’obésité. Des résultats à découvrir dans la revue Nature Communications.

Not5 dans la régulation de la synthèse des protéines

Comment fabriquer des protéines à la bonne vitesse

Chez tous les organismes eucaryotes, le matériel génétique est stocké dans le noyau cellulaire sous forme d’ADN. Pour être utilisé, ce programme est d’abord transcrit en ARN messager dans le cytoplasme des cellules, puis traduit dans les ribosomes, de petites machines capables de décoder les ARN messagers pour synthétiser les protéines qui conviennent. Cependant, la vitesse avec laquelle ce mécanisme se déroule n’est pas uniforme: elle doit s’adapter pour permettre à la protéine d’adopter la bonne configuration. En effet, une dérégulation du rythme de production entraîne des défauts structurels. Les protéines, alors inutilisables, ne sont pas correctement repliées et s’agrègent, devenant toxiques pour la cellule.

En analysant la vitesse d’action des ribosomes dans des cellules de levure, l’équipe de la Pre Martine Collart de l’Université de Genève, en collaboration avec l’Université de Hambourg, est parvenue à démontrer que le rythme de synthèse des protéines est modulé par des facteurs de régulation qui modifient à loisir la vitesse de traduction de l’ARN messager en protéines. Des résultats à découvrir dans la revue Cell Reports.

Cellule humaine infectée par Toxoplasma gondii

Empêcher l’entrée par effraction du parasite
de la toxoplasmose

Toxoplasma gondii, le parasite responsable de la toxoplasmose, est capable d’infecter quasiment tous les types de cellules. On estime que près de 30% de la population mondiale est chroniquement infectée, pour la grande majorité de manière asymptomatique. Une infection au cours de la grossesse peut cependant entraîner de graves pathologies développementales chez l’enfant à naître. Comme les autres membres de la grande famille des Apicomplexes, il s’agit d’un parasite intracellulaire obligatoire qui, pour survivre, doit absolument pénétrer à l’intérieur des cellules de son hôte afin de détourner ses machineries à son avantage. Comprendre comment il y parvient permettra d’envisager des stratégies de prévention et de contrôle plus efficaces que celles disponibles actuellement.

L’équipe de la Pre Dominique Soldati-Favre de l'Université de Genève, en collaboration avec l’Université de Zurich et l’Institut Paul Scherrer à Villigen, ont identifié le rôle clé de RON13, une protéine du parasite essentielle à ce processus d’invasion. La structure tridimensionnelle et le site d’action de cette enzyme sont atypiques, offrant la possibilité de concevoir des inhibiteurs très précis pour stopper l’infection. Ces résultats sont à découvrir dans la revue Nature Communications.

2 cellules-filles de Caulobacter crescentus avec leur flagelle

La douce précision de l’assemblage des flagelles

Afin d’obtenir la machinerie permettant aux bactéries de nager, plus de 50 protéines doivent être assemblées selon une logique et un ordre bien défini pour former le flagelle, l’équivalent cellulaire d’un moteur de bateau. Pour être fonctionnel, le flagelle s’assemble élément par élément, en terminant par l’hélice appelée filament flagellaire composé de six différentes protéines appelée flagellines.

Des microbiologistes du groupe du Prof. Patrick Viollier, de l’Université de Genève, démontrent que l’ajout de sucre sur les flagellines est déterminant pour l’assemblage et la fonctionnalité du flagelle. Cette glycosylation est assurée par l’enzyme FlmG, dont le rôle était jusqu’ici inconnu. Partant de cette observation, accessible dans la revue eLife, les chercheurs⁄euses ont enchaîné avec une autre découverte publiée dans Developmental Cell. Les six flagellines de Caulobacter crescentus, bactérie modèle de ces deux études, contiennent une intruse qui servirait de signal pour enclencher l’assemblage final du flagelle.

Oeil de drosophile.

Un revêtement antireflet s’inspire des yeux de mouches

Les yeux de nombreux insectes, dont la mouche de vinaigre, sont recouverts d’une couche mince et transparente, constituée de minuscules protubérances aux propriétés antireflets et antiadhésives. Un article à lire dans la revue Nature révèle les secrets de fabrication de ce nano-revêtement.

Ce travail, mené par le Prof. Vladimir Katanaev de l’Université de Genève, en collaboration avec des chercheurs de l’Université de Lausanne et de l’École Polytechnique Fédérale de Zurich, montre que ce revêtement n’est formé que de deux ingrédients: une protéine appelée «rétinine» et de la cire cornéenne. Ces deux composés génèrent automatiquement le réseau régulier de protubérances en jouant les rôles respectifs d’activateur et d’inhibiteur d’un processus de morphogenèse qui a été modélisé dans les années cinquante par le mathématicien Alan Turing. L’équipe pluridisciplinaire a même réussi à reproduire artificiellement le phénomène en mélangeant de la rétinine et de la cire sur différents types de surface. Très bon marché et basé sur des matériaux biodégradables, le procédé a permis d’obtenir des nano-revêtements ayant une morphologie semblable à celle des insectes et présentant des fonctionnalités antiadhésives ou antireflets qui pourraient avoir de nombreuses applications dans des domaines aussi divers que les lentilles de contact, les implants médicaux ou encore les textiles.

Staphylocoques dorés

La frilosité des staphylocoques révèle un point faible

Les staphylocoques dorés ont la capacité de se développer dans des conditions environnementales très variables (sur la peau, dans le nez, sur des surfaces stériles, etc.). Leur haute faculté d’adaptation dépend notamment d’une protéine (une hélicase ARN) impliquée dans la dégradation d’ARN messagers devenus inutiles.

En cherchant à mieux comprendre son fonctionnement, des scientifiques du groupe du Prof. Patrick Linder de l’Université de Genève ont découvert que cette hélicase contribue à un autre processus physiologique, sans lien apparent avec le premier: la synthèse des acides gras qui sont les constituants essentiels de la membrane bactérienne. Cette avancée, à lire dans la revue PLoS Genetics, fournit un éclairage intéressant car la synthèse des acide gras est justement l’une des cibles privilégiées par de nombreux laboratoires pour lutter contre ce pathogène difficile à traiter en raison de sa résistance aux antibiotiques.