Yanlan Mao
Laboratory for Molecular Cell Biology, University College London - UK
Tuesday, April 4, 2023 - 11 h
Sciences II, Auditorium A150
Host: Yamini Ravichandran
Organization: Paul Guichard & Florian Steiner
Chronological order of publication in this website
Yanlan Mao
Laboratory for Molecular Cell Biology, University College London - UK
Tuesday, April 4, 2023 - 11 h
Sciences II, Auditorium A150
Host: Yamini Ravichandran
Organization: Paul Guichard & Florian Steiner
La germination est une étape cruciale dans la vie d’une plante. C’est là qu’elle quitte le stade de graine résistante à différentes contraintes environnementales (conditions climatiques, absence d’éléments nutritifs, etc.) pour devenir une plantule beaucoup plus vulnérable. La survie de la jeune plante dépend notamment du moment opportun de cette transition. Il est donc essentiel que cette étape soit contrôlée finement.
Une équipe suisse, dirigée par des scientifiques du groupe du Prof. Luis Lopez-Molina de l’Université de Genève, a découvert le thermomètre interne des graines capable de retarder voire bloquer la germination en cas de températures trop élevées pour la future plantule. Ces travaux pourraient permettre d’optimiser la croissance des plantes dans un contexte de réchauffement climatique global. Ils sont à lire dans la revue Nature Communications.
Etienne Patin
Unit Human Evolutionary Genetics, Institut Pasteur - Paris, France
Tuesday, November 22, 2022 - 11 h
Webminar
Host: Estella Poloni
Organization: Paul Guichard & Florian Steiner
We are pleased to welcome Pre Kimberly Kline as a new faculty member of iGE3.
Kimberly Kline is a full professor at the Department of Microbiology and Molecular Medicine of the Faculty of Medicine. She is interested in the pathogenesis of biofilm-associated infections. In her research she applies a variety of genetic and genomic approaches to interrogate both monomicrobial and polymicrobial Enterococcus faecalis biofilm pathogenesis, including transposon screens in vitro and in vivo using animal models and transposon-sequencing.
Les récepteurs olfactifs, présents à la surface des neurones sensoriels de la cavité nasale, reconnaissent les molécules odorantes et transmettent cette information au cerveau. Comment ces neurones parviennent-ils à détecter une grande variabilité de signaux et à s’adapter à différents niveaux de stimulation ?
Une équipe conjointe de l’Université de Genève, réunissant des chercheurs des groupes du Pr Ivan Rodriguez de la Faculté des Sciences et du Pr Alan Carleton de la Faculté de Médecine, s’est intéressée au profil d’expression des gènes de ces neurones, en présence ou en absence de stimulation odorante. Les scientifiques ont découvert une variabilité insoupçonnée dans ces profils en fonction du récepteur olfactif exprimé et des expositions précédentes aux odeurs. Ces résultats, à lire dans la revue Nature Communications, mettent en évidence un large éventail d’identités de neurones olfactifs, et leur adaptation au milieu environnant.
Les êtres humains, comme la plupart des organismes vivants, sont continuellement exposés à une alternance de températures. Ces variations environnementales provoquent d’importants effets métaboliques et entraînent une adaptation constante. Cependant, malgré certains effets potentiellement bénéfiques de la chaleur ou du froid sur la santé, leur impact sur les différents organes et sur le corps dans son entier restait inconnu.
Pour décrypter les mécanismes biologiques à l’œuvre, l’équipe du Pr Mirko Trajkovski de l’Université de Genève a analysé simultanément les modifications de l’expression des gènes dans divers organes chez la souris. Il s’avère que ceux-ci réagissent fortement aux changements de température selon une modulation propre à chacun. Pour encourager la recherche et d’éventuelles applications thérapeutiques, les scientifiques ont créé une application web où des milliers de profils d’expression génique peuvent être consultés librement. À lire dans la revue eLife.
Les personnes souffrant de troubles du spectre autistique présentent toutes des difficultés comportementales caractéristiques. Néanmoins, la grande hétérogénéité des symptômes reste l’une des grandes interrogations des scientifiques et des médecins.
Si l’on soupçonnait un lien entre le processus inflammatoire et l’autisme, l’équipe de la Pre Camilla Bellone de l’Université de Genève, dans le cadre du Pôle de Recherche National Synapsy, décrypte pour la première fois, chez des souris porteuses d’une vulnérabilité génétique, comment une modification de l’environnement cellulaire déclenche l’apparition de symptômes autistiques. En cause ? Un déséquilibre dans l’expression d’une série de gènes dû à une inflammation massive (conséquence d’une réponse immunitaire à l’administration d’un produit pharmacologique) qui entraîne alors une hyperexcitabilité des neurones du système de la récompense. Ces résultats, à découvrir dans la revue Molecular Psychiatry, apportent une première preuve des interactions étroites entre gènes et environnement dans les dysfonctionnements sociaux typiques des troubles autistiques.
It is our pleasure to welcome Pre Camilla Bellone as a new faculty member of iGE3.
Camilla Bellone is an associate professor at the Department of Basic Neurosciences of the Faculty of Medicine. She uses various in vivo and in vitro techniques to study the neuronal mechanisms underlying social behavior in physiological conditions, and genetic mouse models related to psychiatric diseases to investigate the pathophysiological mechanisms underlying social behavioral deficits.
En biologie évolutive, la «théorie de l’histoire de vie», proposée pour la première fois dans les années 1950, postule que lorsque l’environnement est favorable, les ressources utilisées par les organismes sont consacrées à la croissance et à la reproduction. À l’inverse, en milieu hostile, les ressources sont transférées vers des programmes dits de maintenance, tels que la conservation de l’énergie et la défense contre les attaques extérieures.
Des scientifiques des groupes du Pr Mirko Trajkovski et du Pr Doron Merkler de l’Université de Genève ont développé cette idée pour l’appliquer à un domaine spécifique de la médecine: l’activation erronée du système immunitaire à l’origine des maladies auto-immunes. En étudiant des souris souffrant d’un modèle de sclérose en plaques, l’équipe de recherche a décrypté comment l’exposition au froid poussait l’organisme à détourner ses ressources du système immunitaire vers le maintien de la chaleur corporelle. Ainsi, lors de l’exposition au froid, le système immunitaire diminuait son activité néfaste, atténuant considérablement l’évolution de la maladie auto-immune. Ces résultats, présentés en couverture de la revue Cell Metabolism, posent les bases d’un concept biologique fondamental sur l’allocation des ressources énergétiques.
Les plantes s’adaptent à leurs besoins nutritionnels en modifiant la perméabilité de leurs racines, via la production ou la dégradation d’une couche semblable au liège, la subérine.
En s’intéressant à la régulation de cette couche protectrice chez l’Arabette des Dames (Arabidopsis thaliana), une équipe internationale, dirigée par des scientifiques du groupe de la Pre Marie Barberon de l’Université de Genève, a découvert quatre facteurs moléculaires responsables de l’activation génétique de la subérine. Leur identification a permis de produire des plantes aux racines continuellement recouvertes, ou au contraire totalement dépourvues, de subérine. Celles-ci constituent des outils d’intérêt majeur pour la sélection de plantes plus résistantes aux stress environnementaux. Ces travaux sont à lire dans la revue Proceedings of the National Academy of Sciences (PNAS).