News & events - Keyword : Cell biology

Chronological order of publication in this website

SSCN Annual Meeting 2020 banner

15th Swiss Stem Cell Network Annual Meeting

Innovation in Clinical Bio-manufacturing

The Swiss Stem Cell Network (SSCN) is a Swiss non-profit association of scientists that are or have been active in stem cell research. The SSCN aims to consolidate the Swiss community of scientists involved in stem cell research; promote stem cell-related research and regenerative biology in Switzerland and support regenerative medicine; discuss scientific and ethical issues arising from stem cell research and provide this information to the society.

The SSCN annual meeting 2020 is the 15th edition of that event. It will take place on Friday, December 11, 2020 from 9 h 30 to 17 h 30 as an eMeeting by Zoom, on the general topic organoids and other specialized cell cultures for clinical applications.

Protéine Vav3 des cellules respiratoires

Mucoviscidose:
pourquoi autant de complications respiratoires ?

La mucoviscidose, l’une des maladies génétiques les plus fréquentes en Suisse, provoque des troubles respiratoires et digestifs sévères. Malgré des avancées thérapeutiques considérables, cette maladie réduit toujours l’espérance de vie des personnes atteintes en raison, notamment, d’infections respiratoires parfois mortelles.

Des scientifiques du groupe du Pr Marc Chanson de l’Université de Genève ont découvert la raison de ce grand nombre d’infections pulmonaires: une protéine, Vav3, favoriserait ces infections en créant une «station d’ancrage à bactéries» à la surface des voies respiratoires des personnes atteintes. Inhiber cette protéine empêcherait les bactéries de s’amarrer à la surface des voies respiratoires et de provoquer des infections à répétition. Ces résultats, à lire dans la revue Cell Reports, ouvrent des perspectives thérapeutiques intéressantes pour limiter les complications respiratoires chez les personnes atteintes de mucoviscidose.

IVBM 2020 banner

International Virus Bioinformatics Meeting 2020

* New date: October 8 & 9, 2020 *

The International Virus Bioinformatics Meeting (IVBM) 2020 is a cross-disciplinary conference focussing on bioinformatics approaches in virology. Sub-topics include (but are not limited to): systems virology, virus-host interactions, virus classification and evolution, epidemiology and surveillance, viral metagenomics and ecology, as well as clinical bioinformatics. The meeting will take place from 8 to 9 October 2020 at the Eventforum in Bern, Switzerland.

IVBM 2020 is jointly organised by the European Virus Bioinformatics Center, the University of Bern and the Swiss Institute of Bioinformatics (SIB).

Effet de la désactivation de FKBP10 sur des tumeurs pulmonaires

Une nouvelle cible moléculaire
contre des cancers agressifs

Pertinence, spécificité et limitation des risques de rechute: ces trois éléments sont essentiels lors de la mise au point de nouvelles thérapies contre le cancer. En décryptant le rôle d’une protéine nommée FKBP10, exprimée dans les cellules tumorales lors de certains cancers (affectant notamment le poumon ou le colon), mais pas dans les cellules saines, des scientifiques des groupes du Pr Roberto Coppari et de la Pre Martine Collart de l’Université de Genève ont identifié une cible novatrice. Cette protéine particulièrement néfaste semble en effet renforcer l’agressivité du cancer en favorisant l’apparition de «cellules souches cancéreuses» résistantes. En inhibant cette protéine dans un modèle animal de cancer du poumon, l’équipe genevoise est parvenue à faire régresser la tumeur de manière spectaculaire. Ces résultats, à découvrir dans la revue Cell Reports, apportent une première preuve de l’intérêt de FKBP10 dans certaines formes de cancer pour lesquels le pronostic vital est particulièrement engagé.

Nanocylindre au centre du cytosquelette

Un échafaudage au centre de notre squelette cellulaire

Toutes les cellules animales possèdent une organelle appelée centrosome, essentielle à l’organisation de leur squelette cellulaire. Celui-ci est d’une importance capitale, notamment pour la division cellulaire lors de laquelle il permet le partage fidèle de l’information génétique entre deux cellules filles. Lorsque les cellules ne se divisent plus, les centrioles, structures cylindriques composées de microtubules à la base du centrosome, migrent vers la membrane plasmique et permettent la formation des cils primaires et mobiles, servant respectivement au transfert d’informations et à la genèse du mouvement. Au cours de leurs fonctions biologiques, les centrioles rencontrent de nombreuses forces auxquelles ils doivent résister.

Des scientifiques du groupe du Pr Paul Guichard de l’Université de Genève ont découvert une structure interne au centre de ces nano-cylindres, véritable échafaudage cellulaire maintenant l’intégrité physique de cette organelle. Cette découverte, à lire dans la revue Science Advances, permettra de mieux comprendre les fonctions du centriole et les pathologies associées à son dysfonctionnement.

Division d’une cellule normale et d’une cellule avec stress de réplication

Cancer: à l’origine des mutations génétiques

Quand une cellule se divise pour donner naissance à deux cellules-filles, elle doit répliquer son ADN selon un scénario très précis. En présence d’éléments perturbateurs, les cellules cancéreuses sont incapables de réaliser cette opération de manière optimale et la réplication se déroule alors plus lentement et de manière moins efficace. Ce phénomène porte le nom de stress de réplication. Si on le savait lié à l’augmentation des mutations génétiques, un autre phénomène typique des cellules cancéreuses, le mécanisme à l’œuvre demeurait inconnu jusqu’ici.

En décryptant comment le stress de réplication induit la perte ou le gain de chromosomes entiers chez les cellules-filles des cellules cancéreuses, et en parvenant même à renverser ce phénomène dans ces cellules malades, des chercheurs du groupe du Prof. Patrick Meraldi de l’Université de Genève apportent de nouvelles connaissances qui permettront à terme de mieux diagnostiquer et peut-être de mieux soigner le cancer. Ces travaux sont à découvrir dans la revue Nature Communications.

Pseudo-îlots de cellules alpha humaines

Les cellules humaines peuvent aussi changer de métier

Les manuels de biologie nous apprennent que les cellules, une fois différenciées, restent figées dans l’identité qu’elles ont acquise.

En incitant des cellules pancréatiques humaines non productrices d’insuline à modifier leur fonction pour fabriquer cette hormone de manière durable, des chercheurs du groupe du Prof. Pedro Herrera de l’Université de Genève démontrent pour la première fois que la capacité d’adaptation de nos cellules est bien plus grande qu’on ne le pensait. De plus, cette plasticité ne serait pas une exclusivité des cellules du pancréas humain. Une véritable révolution pour la biologie cellulaire, à découvrir dans la revue Nature. Ce type de conversion cellulaire pourrait compenser la perte ou la dysfonction des cellules produisant naturellement l’insuline, lors d’un diabète.

Expression de la protéine Not1

Un échafaudage solide pour nos cellules

Pour exécuter correctement la tâche pour laquelle elles ont été synthétisées, les protéines doivent d’abord s’assembler pour constituer des «machines» cellulaires efficaces. Mais comment font-elles pour reconnaître leurs partenaires au bon moment ?

Des chercheurs du groupe de la Pre Martine Collart de l’Université de Genève décryptent le rôle fondamental de la protéine Not1, conservée dans tous les organismes eucaryotes: en régulant l’activité des ribosomes - les «usines à protéines» de nos cellules - Not1 permet aux protéines devant travailler ensemble d’être synthétisées au même endroit et au même moment. En identifiant ce mécanisme inconnu jusqu’ici, les scientifiques genevois permettent de mieux comprendre l’un des éléments les plus fondamentaux de la machinerie cellulaire, qui, s’il dysfonctionne, pourrait être à l’origine de nombreuses pathologies. Des résultats à découvrir dans la revue Nature Structural & Molecular Biology.

Noyau, cil et centrioles de cellules humaines.

Comment se forment nos antennes cellulaires

La plupart de nos cellules contiennent un cil primaire immobile, une antenne servant notamment au transfert d’informations provenant du milieu environnant. Certaines cellules possèdent également de nombreux cils mobiles qui servent à générer un mouvement. Le «squelette» des cils est constitué de doublets de microtubules, des «paires» de protéines essentielles à leur formation et à leurs fonctions. Des défauts d’assemblage ou de fonctionnement des cils peuvent en effet provoquer diverses pathologies appelées ciliopathies.

Des scientifiques du groupe du Prof. Paul Guichard de l’Université de Genève ont développé un système in vitro capable de former des doublets de microtubules et ils ont mis en évidence leurs mécanisme et dynamique d’assemblage. Leur étude, publiée dans la revue Science, révèle le rôle crucial de la tubuline, véritable brique de construction, dans la prévention de la formation incontrôlée des structures ciliaires. Cette méthode permettra de découvrir et d’exploiter d’éventuelles différences entre les cils de cellules humaines et ceux de pathogènes pour la mise au point de nouveaux traitements.

Caryotype de la femme

Comment la génétique devient égalitaire

En biologie cellulaire, les hommes et les femmes sont inégaux: les hommes possèdent un chromosome X, alors que les femmes ont en deux. Comment pallier cette différence ?

En se fondant sur d’anciens travaux datant des années soixante, des généticiens de l'ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève ont séquencé une par une des cellules de la peau et du sang et ont observé comment le deuxième chromosome X des femmes s’inactivait graduellement pour éviter une surdose des gènes codés par le X. Ils ont également constaté que plusieurs gènes échappaient à cette inactivation et que celle-ci variait selon le tissu et les phases de la vie de la cellule. Ces travaux permettent d’expliquer les inégalités observées entre les hommes et les femmes face aux maladies génétiques. Des résultats à lire dans la revue PNAS.