Lay public

Chronological order of publication in this website

Cellule HeLa vue avec SwissKASH.

La palmitylation, une nouvelle cible
pour les médicaments contre le cancer

Les protéines membranaires périphériques ont la particularité de se lier temporairement aux membranes cellulaires, étape obligatoire pour qu’elles puissent ensuite remplir leur fonction biologique. Pour ce faire, certaines enzymes servant à catalyser leur modification lipidique entrent en action. Ce processus se nomme «palmitylation». Or, certaines protéines peuvent muter pour devenir oncogènes, et notamment les protéines RAS, responsables d’environ un tiers des cancers.

Afin de comprendre le fonctionnement de la palmitylation et de l’utiliser à des fins thérapeutiques, les groupes du Prof. Vladimir Katanaev et du Prof. Gonzalo Solis de l’Université de Genève ont développé un nouvel outil pour visualiser ce processus dans les cellules vivantes. Et contrairement à ce que l’on pensait, la palmitylation est possible non seulement dans l’appareil de Golgi, site habituel de traitement et d’administration des protéines, mais aussi à l’endroit précis où la protéine doit agir. Cette découverte, à lire dans la revue Nature Communications, ouvre la voie à des stratégies innovantes de développement de médicaments afin de cibler très précisément la liaison membranaire – et donc l’activité – des protéines favorisant l’apparition de cancers.

Cellules de cancer du sein dans un tissu osseux

Cancer du sein: pourquoi les métastases gagnent les os

Lorsque des cellules cancéreuses se détachent d’une tumeur primaire pour migrer vers d’autres organes, on parle de «cancer métastatique». Les organes touchés par ces métastases dépendent toutefois en partie de leur tissu d’origine. Dans le cas d’un cancer du sein, elles se forment en général au niveau des os.

En cherchant à identifier ce qui détermine les organes atteints par les métastases, l’équipe du Pr Didier Picard de l’Université de Genève, en collaboration avec des chercheurs de l’ETH Zurich, a identifié une protéine impliquée dans ce phénomène. Cette découverte pourrait favoriser le développement d’approches thérapeutiques pour supprimer les métastases. Ces travaux sont à lire dans la revue Nature Communications.

Génétique des cellules du pancréas

Sonder l’origine et l’identité
des cellules endocrines du pancréas

Le pancréas joue un rôle-clé dans la régulation du métabolisme. Lorsque certaines de ses cellules – les cellules bêta – ne produisent plus suffisamment d’insuline, le taux de sucre augmente dangereusement dans le sang (hyperglycémie) et le diabète apparaît.

Après avoir découvert que d’autres cellules pancréatiques différenciées, ou «spécialisées», peuvent s’adapter et compenser en partie ce manque d’insuline (voir communiqué de presse), l’équipe du Prof. Pedro Herrera de l’Université de Genèvede démontre que les cellules souches dont sont issues les cellules bêta sont présentes uniquement pendant le développement embryonnaire. Cette découverte met un terme à une longue controverse concernant l’existence hypothétique de cellules souches pancréatiques adultes pouvant engendrer de nouvelles cellules différenciées, productrices d’hormones, après la naissance. Les scientifiques ont également défini précisément l’identité génétique des cellules endocrines pancréatiques. Un outil prometteur pour la production de cellules à insuline de remplacement. Ces résultats sont à lire dans Cell Reports et Nature Communications.

Le génome humain sous l’oeil des généticiens

Premier séquençage complet du génome humain

Il y a 22 ans, une équipe de recherche internationale publiait la première «carte» quasi complète du génome humain. Une véritable révolution qui permettait soudain d’avoir accès à l’ensemble - ou presque - de l’information génétique contenue dans nos cellules. Une petite partie restait en effet encore à découvrir.

Le consortium Telomere-to-Telomere (T2T), piloté par des scientifiques du National Human Genome Research Institute (NHGRI) (membre de l’agence National Institutes of Health) de l’Université de Washington (Seattle) et de l’Université de Californie (Santa Cruz), est parvenu à séquencer les 8% manquants de notre matériel génétique. Cette découverte, à laquelle a participé l’ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève, est à découvrir dans la revue Science et ouvre de nouvelles perspectives pour l’étude de certaines maladies.

Neurones dopaminergiques du cerveau de mouche de vinaigre

Un gène pourrait prévenir la maladie de Parkinson

La maladie de Parkinson est une maladie neurodégénérative caractérisée par la destruction d’une population spécifique de neurones: les neurones à dopamine. La dégénérescence de ces neurones empêche la transmission de signaux contrôlant les mouvements musculaires spécifiques et conduit à des tremblements, des contractions involontaires des muscles ou des problèmes d’équilibre caractéristiques de cette pathologie.

L’équipe de la Pre Emi Nagoshi de l’Université de Genève s’est intéressée à la destruction de ces neurones à dopamine en utilisant la mouche du vinaigre comme modèle d’étude. Les scientifiques ont identifié une protéine clé chez la mouche, mais aussi chez la souris, qui joue un rôle protecteur contre cette maladie et pourrait être une nouvelle cible thérapeutique. Ces travaux sont à lire dans la revue Nature Communications.

Fondation Louis-Jeantet

Conférence Louis-Jeantet - Alain Fischer

Le COVID: stop ou encore ?

Alain Fischer
Professeur honoraire au Collège de France
Président du Conseil d’Orientation de la Stratégie Vaccinale - France

Mardi 5 avril 2022 - 18 h 30
CMU - Auditoire Champendal

  • Conférence publique.
  • Participation en présentiel sur inscription.
  • Participation libre en vidéo-conférence.

Organisation: Fondation Louis-Jeantet et Heidi.News

Co-culture de PAME et de PIM

Des scientifiques décryptent les origines des métastases

Les cellules métastatiques se forment dans une tumeur primaire pour ensuite s’en détacher, migrer vers d’autres organes, s’y fixer et engendrer de nouvelles tumeurs. Cette propagation réduit les chances de guérison des patients-es.

Des scientifiques du groupe du Prof. Ariel Ruiz i Altaba de l’Université de Genève dévoilent une partie des mécanismes d’apparition de ces cellules, jusque-là inconnus. En cause, des cellules ayant échappé de justesse à la mort cellulaire (apoptose) à la suite d’un traitement chimiothérapeutique, qui se reprogrammeraient pour acquérir des compétences pro-métastatiques. Grâce à cette étude, ces cellules - baptisées PAME par les chercheurs - apparaissent désormais comme de nouvelles cibles thérapeutiques. Ces résultats sont à lire dans la revue Cell Reports.

Traitement du cancer du sein

Vaincre les résistances au traitement du cancer du sein

De nombreuses patientes atteintes de cancer du sein développent des résistances au traitement standard médicamenteux visant à empêcher la croissance des cellules cancéreuses.

L’équipe du Pr Didier Picard, de l’Université de Genève, a identifié un régulateur moléculaire impliqué dans ces mécanismes de résistance. La perte de ce régulateur conduit à la prolifération des cellules cancéreuses - même si elles sont traitées - par une voie de signalisation qui peut elle-même être inhibée par un autre traitement. Les découvertes de cette équipe permettent d’envisager une double thérapie chez certaines patientes dont les tumeurs ne répondent plus au traitement standard. Ces travaux sont à lire dans la revue Cancers.

Embryons de C. elegans

Physique et biologie explorent ensemble
les mécanismes du vivant

Chacune de nos cellules contient environ 40 millions de protéines qui accomplissent ensemble toutes les tâches nécessaires à sa survie. Pour y parvenir, les différentes protéines doivent être concentrées en quantités spécifiques, au bon endroit au bon moment. Le processus qui permet le déroulement sans accrocs d’une distribution si précise se déroule à des résolutions spatiales si infimes que les outils standard de biologie cellulaire sont souvent incapables de le détecter.

Pour comprendre comment fonctionne ce mécanisme, des scientifiques du groupe de la Pre Monica Gotta de l’Université de Genève ont développé une approche novatrice qui combine des expériences de génétique et de biologie cellulaire à une modélisation faisant appel à la physique. Grâce à des algorithmes spécifiques, ils/elles ont simulé en 3D et sous forme dynamique la formation de gradients de protéines et ont pu expliquer ces phénomènes complexes. De plus, leur modèle peut être adapté à d’autres systèmes biologiques pour étudier la dynamique des protéines. Ces résultats sont à découvrir dans les Proceedings of the National Academy of Sciences.

Bannière Où est le monstre ?

Où est le monstre ?

Une rencontre entre art et biologie avec le sculpteur Jean Fontaine

Cette exposition interactive est née d’une collaboration entre les chercheuses et chercheurs de la Section de Biologie de l’UNIGE et le sculpteur Jean Fontaine. Elle nous emmène dans un voyage entre art et science pour comprendre comment la nature fabrique la diversité des formes vivantes que nous connaissons aujourd’hui, et questionne plus largement la place de l'espèce humaine dans la nature.

L’exposition propose un parcours dans trois lieux genevois.

  1. Dans la Salle d’Exposition de l'UNIGE (SEU), à Uni Carl Vogt, les créatures chimériques de Jean Fontaine dialoguent avec les travaux des chercheurs dans une installation ludique et interactive, du 7 février au 13 avril 2022.
  2. Le Muséum d’Histoire Naturelle présente une installation originale autour des œuvres du sculpteur du 6 février au 22 mai 2022.
  3. Le Musée Ariana expose une sculpture de l’artiste dans sa vitrine Carte Blanche, visible également du 6 février au 22 mai 2022.
  • Entrée libre.
  • Des visites thématiques et des ateliers pour les classes sont organisés, sur inscription.
  • Commissaire d'exposition: Fabia Kessas