Les micro-organismes remplissent des fonctions clés dans les écosystèmes et leur diversité reflète l’état de santé de leur environnement. Or, ils sont encore largement sous-exploités dans les programmes de biosurveillance actuels, car difficilement identifiables.
Des chercheurs du groupe du Pr Jan Pawlowski de l’Université de Genève ont récemment mis au point une approche combinant deux technologies de pointe pour pallier ce manque. Ils se servent d’outils génomiques pour séquencer l’ADN des micro-organismes dans les prélèvements, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle. Ils construisent ainsi des modèles prédictifs capables d’effectuer un diagnostic de santé des écosystèmes à large échelle et d’identifier les espèces qui remplissent des fonctions importantes. Cette nouvelle approche, publiée dans la revue Trends in Microbiology, permettra d’augmenter considérablement la capacité d’observation d’écosystèmes étendus et de diminuer le temps d’analyse, pour des programmes de biosurveillance de routine beaucoup plus performants.