News & events - Keyword : Development

Chronological order of publication in this website

Peau du lézard ocellé

Le secret mathématique du camouflage des lézards

Le vol coordonné des nuées d’étourneaux, l’organisation des réseaux neuronaux ou encore la construction d’une fourmilière: la nature regorge de systèmes complexes dont le comportement peut être modélisé grâce à des outils mathématiques. Il en va de même pour les motifs labyrinthiques formés par les écailles vertes ou noires du lézard ocellé.

Une équipe pluridisciplinaire de l’Université de Genève, incluant le groupe du Prof. Michel Milinkovitch, a pu expliquer, grâce à une équation mathématique très simple, la complexité du système qui génère ces motifs. Cette découverte contribue à une meilleure compréhension de l’évolution des patrons de coloration de la peau: le processus permet de très nombreuses localisations différentes des écailles vertes ou noires mais aboutit toujours à un motif optimal pour la survie des lézards. Ces travaux sont à lire dans la revue Physical Review Letters.

Morphogène DPP chez la Drosophile

Comment nos organes savent-ils quand arrêter de grandir ?

Le plus petit poisson au monde, le Paedocypris, ne mesure que 7 millimètres. Autant dire rien, comparé aux 9 mètres du requin-baleine. Tous deux partagent pourtant un grand nombre de gènes et une même anatomie, avec des nageoires dorsales et caudales, des branchies ou encore un estomac et un cœur, mais ces organes sont à une échelle mille fois plus petite pour le premier ! Par quel mécanisme les organes et les tissus de ce poisson miniature s’arrêtent-ils de grandir très rapidement, contrairement à ceux de leur cousin géant ?

Une équipe pluridisciplinaire emmenée par le groupe du Prof. Marcos González-Gaitán de l’Université de Genève, et des chercheurs de l’Institut Max Planck pour la Physique des Systèmes Complexes (MPIPKS) à Dresde en Allemagne, a pu répondre à cette question fondamentale en s’appuyant sur des études physiques et une équation mathématique, comme le révèlent ses travaux publiés dans la revue Nature.

Expression du gène Pitx1

L’absence d’un interrupteur génétique
à l’origine de malformations

Le développement embryonnaire suit des étapes délicates: pour que tout se passe bien, de nombreux gènes doivent en effet coordonner leur activité selon un schéma et un tempo très minutieux. Cette mécanique de précision a parfois des ratés qui conduisent à des malformations plus ou moins handicapantes.

En étudiant le gène Pitx1, l’un des gènes impliqués dans la construction des membres inférieurs, l’équipe du Pr Guillaume Andrey de l’Université de Genève a découvert comment une petite perturbation dans le processus d’activation de ce gène est à l’origine du pied-bot, une malformation courante des pieds. Même un gène parfaitement fonctionnel ne peut agir correctement en l’absence de l’un de ses interrupteurs génétiques. Ces courtes séquences d’ADN donnent en effet le signal de transcription de l’ADN en ARN, et s’avèrent indispensables à ce mécanisme. Quand un seul de ces interrupteurs manque, la proportion de cellules où le gène est actif diminue, empêchant les membres inférieurs de se construire correctement. Ces résultats, à découvrir dans la revue Nature Communications, mettent en lumière le rôle jusqu’ici largement sous-estimé des interrupteurs génétiques dans les troubles développementaux.

Activation des aires cérébrales

Les connexions cérébrales naissent à un rythme précis

Le cortex cérébral, situé à la surface du cerveau, gère les facultés cognitives, le langage ou encore les fonctions complexes nous permettant de nous représenter le monde ou de nous projeter dans le futur. En étant capable de catégoriser et d’associer les stimuli lui parvenant de nos cinq sens, le cortex fait les liens entre ces différentes informations pour leur donner un sens et agir en conséquence. Pour ce faire, différents types de neurones établissent des connexions corticales qui se mettent en place lors du développement embryonnaire, puis dans les premiers temps de vie. Mais par quel mécanisme biologique cet assemblage délicat se crée-t-il ?

L’équipe du Prof. Denis Jabaudon de l’Université de Genève décrypte pour la première fois ce phénomène: si les neurones sont anatomiquement différents, leur programme génétique reste, lui, très similaire. Il s’avère que les différences émergent au moment de la maturation de ces neurones, qui doivent suivre un rythme précis pour établir les bonnes connexions, sans quoi une connectivité anormale s’établit. Des résultats surprenants à découvrir dans la revue Nature.

Endosperme d’Arabidopsis thaliana

Le garde-manger de la jeune plante la protège

L’endosperme, tissu entourant l’embryon de la plante dans la graine, a longtemps été perçu comme un tissu nourricier délaissé une fois achevée la transition vers la jeune plante, dite plantule.

Une équipe suisse, dirigée par des scientifiques du groupe du Prof. Luis Lopez-Molina de l’Université de Genève, montre aujourd’hui que l’endosperme joue également un rôle primordial pour le bon développement de la plantule après la germination. Il agit notamment sur la formation de la cuticule, cette couche protectrice essentielle pour la survie des végétaux. Les biologistes observent que ces nouvelles fonctions attribuées à l’endosperme sont indépendantes de sa capacité à fournir les nutriments et sont médiées par la production de molécules spécifiques. Ces travaux sont à lire dans la revue Developmental Cell.

Analyses de réseau longitudinales

Un algorithme prédictif des maladies psychotiques

Un tiers des enfants souffrant d’une microdélétion du chromosome 22 développeront plus tard une maladie psychotique, comme la schizophrénie. Mais comment savoir lesquel-les seront possiblement concerné-es? Aujourd’hui, différentes études ont contribué à la compréhension des mécanismes neurobiologiques qui sont associés au développement des maladies psychotiques. Problème: la capacité à identifier les sujets plus à risque et d’adapter en conséquence leur prise en charge reste limitée. En effet, de nombreuses variables, autres que neurobiologiques, contribuent à leur développement.

C’est pourquoi le groupe du Prof. Stéphan Eliez de l’Université de Genève s’est associée à une équipe de l’EPFL afin d’utiliser de manière longitudinale un outil d’intelligence artificielle, la méthode d’analyse en réseau. Cet algorithme permet de corréler de nombreuses variables provenant de milieux différents – neurobiologique, psychique, cognitive, etc. – sur une vingtaine d’années, afin de déterminer quels symptômes du moment présent sont annonciateurs d’une maladie psychotique dans la future trajectoire développementale de l’enfant. Ces résultats, à lire dans la revue eLife, permettront une prise en charge précoce des enfants jugés à risque de développer des troubles psychiques, dans l’objectif de les prévenir, voire de les éviter.

Cerveau normal et cerveau microcéphale

Un ralentissement de la division cellulaire
cause la microcéphalie

La naissance d’un être humain requiert des milliards de divisions cellulaires pour passer d’un ovule fécondé à un bébé. A chacune de ces divisions, le matériel génétique de la cellule mère se duplique pour se répartir équitablement entre les deux nouvelles cellules. Dans le cas de la microcéphalie primaire, une maladie génétique rare mais grave, le ballet de la division cellulaire est déréglé, empêchant le développement adéquat du cerveau.

Des scientifiques du groupe du Prof. Patrick Meraldi de l’Université de Genève, en collaboration avec des chercheurs chinois, ont mis en évidence comment la mutation d’une seule protéine, WDR62, empêche le réseau de câbles chargé de séparer le matériel génétique en deux de se former correctement. Comme la division cellulaire est alors ralentie, le cerveau n’a pas le temps de se construire entièrement. Ces résultats, à lire dans le Journal of Cell Biology, apportent un nouvel éclairage sur le fonctionnement de la division cellulaire, un phénomène également impliqué dans le développement des cancers.