Publications

Chronological order of publication in this website

Noyau, cil et centrioles de cellules humaines.

Comment se forment nos antennes cellulaires

La plupart de nos cellules contiennent un cil primaire immobile, une antenne servant notamment au transfert d’informations provenant du milieu environnant. Certaines cellules possèdent également de nombreux cils mobiles qui servent à générer un mouvement. Le «squelette» des cils est constitué de doublets de microtubules, des «paires» de protéines essentielles à leur formation et à leurs fonctions. Des défauts d’assemblage ou de fonctionnement des cils peuvent en effet provoquer diverses pathologies appelées ciliopathies.

Des scientifiques du groupe du Prof. Paul Guichard de l’Université de Genève ont développé un système in vitro capable de former des doublets de microtubules et ils ont mis en évidence leurs mécanisme et dynamique d’assemblage. Leur étude, publiée dans la revue Science, révèle le rôle crucial de la tubuline, véritable brique de construction, dans la prévention de la formation incontrôlée des structures ciliaires. Cette méthode permettra de découvrir et d’exploiter d’éventuelles différences entre les cils de cellules humaines et ceux de pathogènes pour la mise au point de nouveaux traitements.

Hydre à deux têtes

Pourquoi les hydres n’ont finalement qu’une tête

L’Hydre d’eau douce est capable de régénérer n’importe quelle partie de son corps pour reconstituer un individu entier. Le petit polype possède un centre organisateur de développement situé au niveau de la tête, et un autre localisé dans le pied. L’organisateur de tête exerce deux activités opposées, l’une activatrice, qui provoque la différentiation de la tête, et l’autre inhibitrice, qui prévient la formation de têtes surnuméraires.

Des scientifiques du groupe de la Pre Brigitte Galliot de l’Université de Genève ont découvert l’identité de l’inhibiteur, une protéine appelée Sp5, et déchiffré le dialogue entre ces deux activités antagonistes qui permet de maintenir un corps adulte à une seule tête et d’organiser une réponse de régénération appropriée. Publiée dans la revue Nature Communications, leur étude souligne que ce mécanisme a été conservé au cours de l’évolution, tant chez l’Hydre que l’humain. Sp5 pourrait donc être un excellent candidat à tester comme inhibiteur des tumeurs humaines dont la voie activatrice est le moteur de prolifération.

Coupe d’un cerveau de souris

Drogue: le circuit de l’addiction identifié

Que se passe-t-il dans le cerveau d’une personne qui se drogue de manière compulsive ? Ce fonctionnement diffère-t-il chez une personne qui consomme de la drogue de manière contrôlée ?

Pour résoudre cette énigme, des neurobiologistes du groupe du Prof. Christian Lüscher de l’Université de Genève se sont intéressés aux différences du fonctionnement cérébral entre ces deux catégories. Ils ont ainsi découvert que chez les consommateurs compulsifs, le circuit cérébral reliant la zone de la prise de décision au système de récompense est renforcé. Dans un modèle d’addiction chez la souris, ils ont aussi constaté qu’en diminuant l’activité de ce circuit, les souris compulsives parvenaient à se gérer et qu’inversement, en la stimulant, une souris qui initialement perdait le contrôle, devenait accro. Cette découverte majeure est à lire dans la revue Nature.

Caryotype de la femme

Comment la génétique devient égalitaire

En biologie cellulaire, les hommes et les femmes sont inégaux: les hommes possèdent un chromosome X, alors que les femmes ont en deux. Comment pallier cette différence ?

En se fondant sur d’anciens travaux datant des années soixante, des généticiens de l'ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève ont séquencé une par une des cellules de la peau et du sang et ont observé comment le deuxième chromosome X des femmes s’inactivait graduellement pour éviter une surdose des gènes codés par le X. Ils ont également constaté que plusieurs gènes échappaient à cette inactivation et que celle-ci variait selon le tissu et les phases de la vie de la cellule. Ces travaux permettent d’expliquer les inégalités observées entre les hommes et les femmes face aux maladies génétiques. Des résultats à lire dans la revue PNAS.

Centrosome révélé par 3 techniques

Gonfler nos cellules pour observer leur vie intérieure

Les cellules sont constituées de minuscules compartiments, les organites, qui ont des structures et des rôles précis. Pouvoir observer ces structures représente un énorme défi et permettrait de mieux appréhender le fonctionnement cellulaire. Or, jusqu’à présent, la microscopie à fluorescence n’offrait pas de résolution suffisante pour obtenir une visualisation détaillée de l’ultrastructure des organites.

Aujourd’hui, des chercheurs du groupe du Pr Paul Guichard de l’Université de Genève ont réussi à agrandir des échantillons biologiques sans les déformer et à en révéler des détails à une échelle nanométrique, soit du millionième de millimètre. Une résolution inégalée en microscopie optique. Décrite dans la revue Nature Methods, cette nouvelle technique permet de visualiser l’architecture et la composition des organites, ainsi que celles de complexes protéiques de natures diverses. Des modifications biochimiques présentes sur leurs composants peuvent également être détectées dans un contexte tridimensionnel, à des fins de cartographie.

Etat de santé des écosystèmes

Surveiller l’environnement grâce à l’intelligence artificielle

Les micro-organismes remplissent des fonctions clés dans les écosystèmes et leur diversité reflète l’état de santé de leur environnement. Or, ils sont encore largement sous-exploités dans les programmes de biosurveillance actuels, car difficilement identifiables.

Des chercheurs du groupe du Pr Jan Pawlowski de l’Université de Genève ont récemment mis au point une approche combinant deux technologies de pointe pour pallier ce manque. Ils se servent d’outils génomiques pour séquencer l’ADN des micro-organismes dans les prélèvements, puis exploitent cette masse considérable de données grâce à l’intelligence artificielle. Ils construisent ainsi des modèles prédictifs capables d’effectuer un diagnostic de santé des écosystèmes à large échelle et d’identifier les espèces qui remplissent des fonctions importantes. Cette nouvelle approche, publiée dans la revue Trends in Microbiology, permettra d’augmenter considérablement la capacité d’observation d’écosystèmes étendus et de diminuer le temps d’analyse, pour des programmes de biosurveillance de routine beaucoup plus performants.

Cellules épithéliales humaines

Le cheval de Troie du staphylocoque doré

La bactérie Staphylococcus aureus est responsable de nombreux types d’infections parfois mortelles chez l’humain. L’une de ses armes les plus redoutables est l’α-toxine, qui détruit les cellules de l’hôte en formant des pores au niveau de leurs membranes.

Des chercheurs du groupe de la Pre Sandra Citi de l’Université de Genève ont identifié le mécanisme qui permet l’ancrage de ces pores dans la membrane des cellules épithéliales. L’étude, publiée dans la revue Cell Reports, montre comment différentes protéines des cellules humaines s’assemblent en un complexe auquel s’arriment de nombreux pores, avec un verrou moléculaire qui stabilise le tout. Les biologistes démontrent également qu’il suffit de bloquer l’assemblage de deux des pièces du complexe pour que les pores puissent être enlevés de la membrane et que les cellules survivent. Identifier les mécanismes cellulaires de l’hôte qui contribuent à la virulence des toxines devient essentiel pour développer des approches thérapeutiques contre les bactéries résistantes aux antibiotiques.

Neurones dopaminergiques

La dopamine, élément clé de l’addiction à l’héroïne

L’addiction désigne l’envie répétée et irrépressible de faire ou de consommer quelque chose, malgré ses effets délétères. Celle-ci apparaît lorsqu’une substance ou un comportement crée des effets considérés comme positifs par les individus concernés, comme le plaisir ou la récompense, qui renforcent alors les comportements répétitifs. Mais, dans le cerveau, que se passe-t-il ?

En comprenant les processus cérébraux à l’œuvre qui mènent aux puissants effets addictifs de l’héroïne, les scientifiques du groupe du Prof. Christian Lüscher de l’Université de Genève permettent de mieux comprendre ce phénomène. Leurs résultats, à découvrir dans la revue eLife, ouvrent de nouvelles perspectives dans le domaine de la prévention et des traitements de la toxicomanie, mais aussi dans le développement de médicaments analgésiques non addictifs.

Ilot pancréatique de souris

Des cellules changent de métier pour contrer le diabète

Le diabète est caractérisé par une hyperglycémie persistante qui apparaît lorsque certaines cellules du pancréas – les cellules β – sont détruites ou ne sont plus capables de sécréter de l’insuline.

Le groupe du Prof. Pedro Herrera de l’Université de Genève est parvenu à montrer comment une partie des cellules α et δ du pancréas, qui produisent habituellement d’autres hormones, peuvent prendre le relais des cellules β endommagées en se mettant à produire de l’insuline. En observant comment ces cellules parviennent à modifier leur fonction en changeant partiellement d’identité, les chercheurs ont découvert un phénomène de plasticité cellulaire inconnu jusqu’ici. Au-delà du pancréas, cela pourrait concerner bon nombre de nos cellules. Ces résultats, à découvrir dans Nature Cell Biology, permettent d’envisager des stratégies thérapeutiques entièrement nouvelles qui feraient appel aux capacités régénératrices du corps.

Gastruloïde âgé de 7 jours

Des cellules souches s’organisent seules
en pseudo-embryon

Le plan de construction des mammifères est mis en œuvre peu après l’implantation de l’embryon dans l’utérus. Les différents axes du corps, antéro-postérieur, dorso-ventral et medio-latéral, se mettent en place rapidement, sous l’égide de réseaux de gènes qui coordonnent la transcription de l’ADN dans diverses régions de l’embryon au cours du temps.

Les équipes du Prof. Denis Duboule de l’Université de Genève et de l’Ecole Polytechnique Fédérale de Lausanne, et du Prof. Alfonso Martinez Arias de l’Université de Cambridge au Royaume-Uni, ont démontré la capacité de pseudo-embryons de souris à produire la plupart des types de cellules progénitrices nécessaires au développement. Formées à partir de quelque 300 cellules souches embryonnaires seulement, ces structures, appelées gastruloïdes, ont un développement comparable à celui de la partie postérieure d’embryons âgés de 6 à 10 jours. L’étude, publiée dans la revue Nature, montre que la formation des trois axes embryonnaires principaux se déroule selon un programme d’expression des gènes similaire à celui des embryons. Les gastruloïdes possèdent ainsi un potentiel remarquable pour l’étude des stades précoces du développement embryonnaire et de ses anomalies.