UNIGE Press releases

Chronological order of publication in this website

Sardine amazonienne

Des sardines aux sources de la biodiversité

Le fleuve Amazone abrite la plus grande biodiversité de poissons d’eau douce du monde. Quelle est donc l’origine de ce foisonnement d’espèces? Les chercheurs du groupe du Dr Juan Montoya-Burgos de l’Université de Genève ont intégré un éventail de facteurs potentiels dans un même modèle statistique pour étudier la genèse de la diversité génétique au sein d’une espèce typique, la sardine amazonienne.

Publiée dans la revue PLOS ONE, leur étude décrit la contribution de chaque facteur et les synergies à l’œuvre au cours du temps. Cette approche, qui peut facilement être utilisée pour n’importe quelle espèce, pourrait être intégrée dans l’étude de l’impact de divers chantiers prévus, tels que la création de nouveaux barrages sur l’Amazone, ainsi que toute altération humaine d’envergure dans divers écosystèmes.

Accumulation de lipides dans le foie

Cancer du foie: la synthèse lipidique
favorise la formation des tumeurs

Les lipides sont une source d’énergie essentielle et un composant cellulaire important. La croissance rapide et incontrôlée des cellules cancéreuses en nécessite une grande quantité.

Le groupe du Prof. Howard Riezmann de l’Université de Genève et des chercheurs du Biozentrum de l’Université de Bâle ont découvert que la protéine mTOR stimule chez la souris la production de lipides dans les tumeurs du foie, dans le but de satisfaire, entre autres, les besoins énergétiques accrus des cellules cancéreuses. Leur recherche, publiée dans Cancer Cell, montre que ce processus est également observé chez des patients atteints de cancer du foie.

Cellules épithéliales colorées

Se multiplier ou ne pas se multiplier?
Un ressort cellulaire répond

L’épithélium, un tissu constitué de cellules étroitement juxtaposées, forme les glandes et recouvre la surface externe du corps humain tout comme ses cavités internes, les poumons ou les intestins par exemple. Il en existe différents types selon les surfaces qu’il revêt et les fonctions qu’il assure. Ces tissus sont soumis à de multiples tensions, comme celles provoquées lors du passage des aliments ou du remplissage d’une vessie. Ces tensions influencent fortement la prolifération et la différenciation des cellules épithéliales, qu’elles soient saines ou cancéreuses, mais les processus impliqués demeurent mal compris.

Le groupe de Prof. Sandra Citi de l'Université de Genève a découvert que les protéines Zonula Occludens-1 et -2 (ZO-1 et ZO-2), qui contribuent à l’étanchéité de l’épithélium, perçoivent ces signaux physiques et activent différentes réponses cellulaires en conséquence. Publiés dans la revue Current Biology, ces résultats dévoilent un processus inédit par lequel des forces mécaniques peuvent réguler la structure des épithéliums, leur équilibre dynamique, ainsi que l’établissement des barrières tissulaires. Inhiber ZO-1 de façon ciblée dans les tumeurs pourrait dès lors constituer une voie à explorer, étant donné son rôle vraisemblable dans la prolifération des cellules cancéreuses.

Protéines et trisomie 21

Trisomie 21: la recherche franchit un nouveau cap

Le syndrome de Down, ou trisomie 21, est une des maladies génétiques les plus fréquentes.

Pour mieux comprendre comment une copie surnuméraire d’un chromosome 21 peut impacter le corps humain dès son développement, l'ancien groupe du Prof. Stylianos Antonarakis de l’Université de Genève et des chercheurs de l’ETH Zurich ont analysé pour la première fois les protéines de personnes trisomiques. Ces recherches, publiées dans la revue Nature Communications, démontrent que loin de ne toucher que les protéines codées par les gènes des chromosome 21, la trisomie 21 impacte également les protéines codées par les gènes localisés sur les autres chromosomes. En effet, les cellules se retrouvent débordées par le surplus protéique généré par les gènes tripliqués et ne parviennent plus à réguler la quantité de protéines.

Ces résultats apportent une nouvelle compréhension du syndrome de Down et de ses symptômes par l’étude des protéines et révèlent les différentes conséquences du surnombre de chromosome 21 sur le comportement cellulaire.

Moustique et paludisme

Attaque inédite contre le paludisme

Le paludisme est une maladie parasitaire qui se transmet d’homme à homme par le biais d’une piqûre de moustique, l’anophèle femelle. Endémique dans de vastes zones tropicales de la planète, il tue chaque année plus de 500’000 personnes, dont environ 80% d’enfants de moins de 5 ans. Si des stratégies thérapeutiques existent, elles demeurent jusqu’ici modérément efficaces.

En identifiant deux enzymes essentielles à la survie du parasite ainsi qu’une molécule capable de les inhiber, les groupes de Prof. Dominique Soldati-Favre de l'Université de Genève et de Prof. Volker Heussler de l'Université de Berne apportent aujourd’hui un nouvel espoir dans la lutte contre le paludisme. Leur découverte pourrait en effet permettre la mise au point de médicaments susceptibles de bloquer non seulement le développement du parasite chez l’être humain, mais également sa transmission de l’être humain au moustique et vice-versa. Des résultats étonnants, à lire dans la revue Science.

Médecine et génétique

La lecture des variants génomiques ouvre la voie
à la médecine prédictive

L’équipe du Prof. Emmanouil Dermitzakis de l’Université de Genève a fait un pas important vers une véritable médecine prédictive en explorant les liens entre maladie et activité génétique dans différents tissus. Ils ont ainsi construit un modèle, première étape pour identifier dans le génome non codant les séquences indiquant un effet pathogène lié à une maladie.

Dans une deuxième étude, ils ont été encore plus loin en associant le risque de développer une maladie - notamment la schizophrénie, les maladies cardiovasculaires ou encore le diabète – à la variabilité de l’activité du génome dans différents types de cellules. Et leurs résultats ont apporté quelques surprises. Leurs découvertes, à lire dans Nature Genetics, pourrait bien révolutionner la manière dont chacun d’entre nous, selon son génome, prendra à l’avenir soin de sa santé.

Poisson-chat denticulé mâle

Lorsque les dents poussent sur le corps

A l’instar de lignées de vertébrés actuellement disparues, certains poissons-chats ont aujourd’hui le corps recouvert de plaques osseuses hérissées de dents fines. Ces dernières, qui tombent puis repoussent régulièrement, leur servent à se défendre et à séduire les femelles.

Le groupe du Dr Juan Montoya-Burgos de l’Université de Genève a voulu comprendre comment ces dents capables de régénération se développent hors de la bouche. Ils ont découvert que les dents poussent toujours sur un os, quel que soit son type, même en absence de plaque osseuse. Ceci suggère un rôle de l’os dans l’induction du tissu dentaire. Ces résultats, publiés dans la revue Proceedings of the Royal Society, contribuent à élucider les mécanismes permettant la régénération des dents, y compris chez l’humain.

Modèle de la double hélice d'ADN

Parution d’un atlas des variations génétiques

Le projet international GTEx (pour Genotype-Tissue Expression), lancé en 2010, co-dirigé par le Prof. Emmanouil Dermitzakis de l’Université de Genève et financé par les National Institutes of Health (NIH) américains, arrive à son terme. Le consortium qui le constitue a publié le 11 octobre 2017 dans la revue Nature l’apogée de ses travaux: un atlas détaillé qui documente les séquences d’ADN influençant l’expression des gènes, c’est-à-dire la manière dont le génome d’une personne engendre un trait observable, de la couleur de ses cheveux aux maladies qui peuvent l’affecter.

Cet atlas constitue une ressource d’une richesse inestimable mise à la disposition des scientifiques qui s’intéressent à la manière dont les variations génomiques individuelles - notamment entre les différents tissus - influencent l’activation des gènes et, en conséquence, les différences biologiques.

Deux souriceaux frères

Un gène architecte pour assimiler le lait maternel

Une famille de gènes «architectes» nommés Hox coordonne la formation des organes et des membres au cours de la vie embryonnaire. Des chercheurs du groupe de Prof. Denis Duboule de l’Université de Genève et de l’Ecole Polytechnique Fédérale de Lausanne viennent de découvrir une fonction essentielle de l’un de ces gènes, Hoxd3, dans le développement de l’intestin des souriceaux nouveau-nés.

Des mutations précises dans ce gène entraînent en effet une assimilation défectueuse du lait maternel et un retard de croissance important, souvent létal. Chez l’humain, ce défaut génétique contribue probablement à certaines formes d’insuffisance intestinale chez les prématurés, telles que l’entérocolite nécrosante du nouveau-né. La détection d’un gène Hoxd3 muté dans le cadre de cette affection permettrait d’en identifier une des causes, qui demeurent inconnues à ce jour. Ces travaux ont été publiés dans la revue PNAS.

Deux TOROIDs

Des tubules pour stopper la croissance cellulaire

TORC1 est un complexe enzymatique qui contrôle la croissance de nos cellules, mais il peut devenir hyperactif et entraîner des maladies telles que le cancer.

Publiée dans la revue Nature, une étude menée par le groupe du Prof. Robbie Loewith, de l’Université de Genève, décrit comment le sucre régule l’activité de TORC1, par un mécanisme inédit. En présence de ce nutriment, les complexes TORC1 déclenchent le processus qui permet aux cellules de croître. En l’absence de sucre, ils s’assemblent sous forme d’immenses structures tubulaires qui peuvent atteindre un cinquième de la taille de la cellule, ce qui les rend inactifs et stoppe la croissance cellulaire. La formation et le désassemblage de ces tubules sont faciles à observer dans les cellules vivantes, ce qui permet d’identifier des composés interférant avec ce processus, pour la mise au point de nouveaux traitements-candidats anticancéreux.